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SNAr reactions of b-substituted porphyrins and the synthesis
of meso substituted tetrabenzoporphyrins
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Abstract—Reaction of 2,3,7,8,12,13,17,18-octaethylporphyrin with LiR reagents containing functional groups readily yields meso
substituted derivatives suitable for further transformations with residues such as –p-C6H5Br, –p-C6H5–CBCH, –p-C6H5–NH2 or
–(CH2)3–CH@CH2. Similar reactions of tetrabenzoporphyrin with alkyllithium reagents afforded the first entry into meso mono-
and dialkylsubstituted tetrabenzoporphyrins while reaction of bicyclo[2.2.2]oct-type masked isoindole precursors with LiR followed
by in situ retro-Diels–Alder reaction also afforded the 5-phenyl and 5,10-diphenyltetrabenzoporphyrins in high purity.
� 2004 Elsevier Ltd. All rights reserved.
The introduction of functional groups into easily avail-
able, pre-made tetrapyrroles remains one of the pressing
targets in porphyrin chemistry to further advance
applications in biology, medicine, and materials sci-
ence.1 One such method utilizes the regioselective
nucleophilic substitution of porphyrins in the meso
position with organolithium reagents.2 It allows a facile
introduction of functional groups into simple 5,15-
disubstituted porphyrins and can be used to substitute
all four meso positions in b-substituted porphyrins in
sequence.3 In order to develop further the synthetic
utility of this method we have now targeted octa-
ethylporphyrin 1 and tetrabenzoporphyrin 8 as exemp-
lars for this reaction.

Due to its excellent solubility and diverse reactivity
octaethylporphyrin 1 is one of the most widely used
frameworks for complex porphyrinic systems and serves
as a standard test case for new reactions.4 Improved
access to derivatives of 1 amenable to subsequent C–C
coupling reactions would impact many areas of applied
research. In contrast, although tetrabenzoporphyrin
derivatives have significant potential in optics, tumor
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therapy and materials science, their characterization and
the advancement of applications is hampered by their
low solubility and undeveloped chemistry.5

First, we reacted octaethylporphyrin 1 with a variety of
organolithium reagents bearing functional groups suit-
able for later C–C coupling reactions (e.g., aryl-Br for
Heck-type reactions, aryl-CBCH for Glaser couplings,
alkyl-CH@CH2 for metathesis or ozonolysis, –NH2 for
amide formation) (Scheme 1). As expected simple
reagents such as LinBu or LiPh3 led to the target por-
phyrins in good yields (e.g., 3b 72%,6 3c 56%, 3d 72%,
and 3e 48%). Sterically hindered reagents such as LitBu
or LiiPr did not react with 1 and thus an excess of LitBu
can be used for easier in situ preparation of reactive
organolithium reagents preventing any formation of
butylated by-products. Analogous transformations of
the nickel(II) complex 2 resulted in differences in
reactivity and yields to those observed for reactions
with LinBu or LiPh (for example, lower yields for
arylations: 4b 59%, 4c 40%; higher for alkylations: 4e
60%).

In line with our prediction from mechanistic studies,2b

meso aryl substituents direct subsequent substitutions to
the neighboring meso position. Thus, 3a was trans-
formed in 61% yield to the 5,10 derivative 5 while 6 was
obtained in 65% from 3d. Reactions of 1 with
more complex LiR reagents can be performed with ease
in a manner similar to those of b-unsubstituted
porphyrins.3a
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Scheme 1. Synthesis of meso substituted 2,3,7,8,12,13,17,18-octaeth-

ylporphyrins. (a) LiR1, THF, )40 to )80 �C; (b) 1 h, rt; (c) H2O,

15min; (d) DDQ, 1 h.
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Encouraged by these results we anticipated that the
introduction of solubility-enhancing groups into the
meso position of tetrabenzoporphyrin 8 by way of similar
reactions should be possible. So far, synthetic attempts to
improve access to benzoporphyrins have been aimed at
methods for the modification of all four meso positions
with one type of residue7 or focused on the modification
of the annulated rings.5;8 A significant breakthrough has
been Ono�s method to first prepare soluble benzoporph-
yrin precursors withmasked isoindole units followed by a
retro-Diels–Alder reaction.9 However, as yet this method
allows no simple variation of the meso substituents. It
remains a significant problem to obtain very pure sam-
ples of individual tetrabenzoporphyrins with 1–4 meso-
aryl residues and this hampers further progress in
understanding the influence of individual substituents on
the optical and physicochemical properties.5;10 So far,
compounds such as 10c or 11c could only be prepared
from mixed condensation reactions with tedious chro-
matographic work-up. Similarly, meso alkyltetrabenzo-
porphyrins have remained elusive.10b

In order to investigate the SNAr reactions of this por-
phyrin system we reacted (tetrabenzoporphyr-
inato)zinc(II) 711 with LinBu under conditions similar to
those used for 1 (Scheme 2). Three demetalated products
were obtained after work-up and identified as the free
base 8 of the starting material (10%), the monoalkylated
product 10a (43%), and the 5,10-dibutylated porphyrin
11a (13%). A similar reaction with Li n-C6H13 gave 8
(32%), 10b (38%), and 11b (9%).12 Attempts to increase
the yield of the dialkylation product by using 8 equiv of
Li n-C6H13 or higher temperatures gave 8, 10b, and 11b
in 46%, 14%, and 6% yield, respectively. No reaction
took place with either LiPh, LitBu or Li n-C6H4–NLi2.

The two meso substituted porphyrins 10 and 11 could be
separated from each other by column chromatography
and were obtained in high purity allowing full spectro-
scopic characterizations. Nevertheless, the meso mono-
substituted derivatives were still very insoluble and thus
spectroscopic analyses were performed on the respective
dications. Both 11a and 11b are soluble in organic sol-
vents such as CH2Cl2 or acetic acid ethyl ester. Based
on the observed dialkylation taking place tetra-
benzoporphyrin shows a reactivity toward LiR similar
to that of unsubstituted porphyrin.13

Next, we planned to monosubstitute the more soluble
tetrabenzoporphyrin precursor 9 (as the diastereomeric
mixture) developed by Ono and co-workers,9 expecting
a reactivity similar to 1. However, reaction of 9 with
LinBu gave the monosubstituted derivative as the main
product accompanied by smaller amounts of the
disubstituted compound. The two compounds could not
be separated at this stage. Thus, we performed the
substitution and subsequent retro-Diels–Alder reaction
as a one-pot reaction and obtained 10a and 11a in 43%
and 7% yield, respectively. Chromatographic work-up
of this reaction was fairly simple. However, this was
counterbalanced by the lengthy synthesis of the isoin-
dole porphyrin precursor.9 In contrast to 7, porphyrin 9
reacted easily with LiPh to yield 10c (52%) and 11c (8%).
This reaction gave both compounds in high purity and
for the first time allowed detailed spectroscopic investi-
gations on such systems.14

Although the reaction of tetrabenzoporphyrins with LiR
requires further study it appears to offer a relatively
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Scheme 2. Synthesis of meso substituted tetrabenzoporphyrins. (a) LiR1, THF, )30 to )80 �C; (b) H2O, 10min; (c) DDQ, 1 h; (d) DDQ, 200 �C, 1 h.
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simple entry into meso substituted tetrabenzoporphyrin
derivatives and has shown its potential by giving access
to the first meso alkylated tetrabenzoporphyrins. Prep-
aration of the 5,10 derivative 11 via an SNAr reaction
with 10 in better yields and subsequent conversion to the
meso tri- and tetrasubstituted derivatives including
those with mixed substituent pattern should be
straightforward as the solubility increases with each
additional meso substituent.
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